Linear mappings preserving square-zero matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

متن کامل

Zero-sum Square Matrices

Let A be a matrix over the integers, and let p be a positive integer. A submatrix B of A is zero-sum mod p if the sum of each row of B and the sum of each column of B is a multiple of p. Let M(p, k) denote the least integer m for which every square matrix of order at least m has a square submatrix of order k which is zero-sum mod p. In this paper we supply upper and lower bounds for M(p, k). In...

متن کامل

linear maps preserving or strongly preserving majorization on matrices

for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...

متن کامل

Mappings Preserving Spectra of Products of Matrices

Let Mn be the set of n × n complex matrices, and for every A ∈ Mn, let Sp(A) denote the spectrum of A. For various types of products A1 ∗ · · · ∗ Ak on Mn, it is shown that a mapping φ : Mn → Mn satisfying Sp(A1 ∗ · · · ∗ Ak) = Sp(φ(A1) ∗ · · · ∗ φ(Ak)) for all A1, . . . , Ak ∈ Mn has the form X → ξS−1XS or A → ξS−1XtS for some invertible S ∈ Mn and scalar ξ. The result covers the special cases...

متن کامل

Adjacency Preserving Mappings of Rectangular Matrices

Let D be a division ring and let m,n be integers ≥ 2. Let Mm×n(D) be the space of m × n matrices. In the fundamental theorem of the geometry of rectangular matrices all bijective mappings φ of Mm×n(D) are determined such that both φ and φ−1 preserve adjacency. We show that if a bijective map φ of Mm×n(D) preserves the adjacency then also φ −1 preserves the adjacency. Thus the supposition that φ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1993

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700015811